入射到整個積分球體表面的總通量的n次反射的交換可以用冪級數(shù)來建模,并簡化為一個簡單的輻射方程:式中Φ為入射到積分球內的光,As為積分球壁面積,p為積分球壁反射率,f為開口端口面積占比。簡化的輻射度方程可用于模擬光和LED測量應用的光學效率。這些應用包括用于激光表征的光學衰減,進入光纖或安裝在積分球體上的探測器表面的通量,用于圖像傳感器的光譜輻射度和用于非成像光學傳感傳感器的光譜輻照度,或積分球體應用所需的其他許多輻射和光度參數(shù)。利用積分球,可以求解球體內部的溫度場、流場等物理量分布。色溫可調均勻光源高光譜成像

積分球內部涂層的選擇:在選擇積分球時,漫反射涂層的選擇非常重要,漫反射涂層或材料的反射率——越高越好?!案叩姆瓷渎室馕吨庠诒晃罩霸谇蝮w內有更多的反射,”Labsphere銷售和營銷副總裁Peter Weitzman說,“因此集成度更好,測量精度也更好?!甭瓷渫苛蠂娡糠绞酵ǔ0▏婌F式或粉末式。積分球內部噴涂哪種漫反射涂層,取決于系統(tǒng)使用環(huán)境,以及使用積分球測試的波段范圍。針對極l端條件或者小積分球,燒結聚四氟乙烯(PTFE或Teflon)提供非常好的性能。例如Labsphere的Spectralon EPV漫反射材料可用于深紫外、極l端物理和真空中。典型的硫酸鋇涂層,盡管也可在近紫外和紅外使用,但主要用于可見光波段范圍。鍍金漫反射涂層主要應用于NIR-MIR波段范圍。每種漫反射涂層的較佳使用波段范圍和概述詳見生產(chǎn)商的網(wǎng)站發(fā)布內容。B光源Helios標準光源單色光源積分球的形狀通常是球形,但也可以根據(jù)需要制成其他形狀,如橢球形。

積分球輻射度,入射到漫射表面上的光通過反射產(chǎn)生一個虛擬光源。從表面發(fā)出的光較好用它的輻射度來描述,即每單位立體角的通量密度。輻射度是一個重要的工程量,因為它可以預測光學系統(tǒng)在觀察被照射表面時所能收集到的光通量的數(shù)量。對于積分球,輻射度推導考慮了入射到積分球內的光、積分球壁反射率、積分球表面積、光進行的多次表面反射以及通過開口端口的損失。進入積分球體的光通過初始反射幾乎完全漫射。離開表面的一小部分光到達另一個表面區(qū)域并被漫反射,依此類推。
激光功率測量,積分球很容易捕獲或者集成近準直光源例如激光光束或者高度分散的光源(例如激光二極管或VCSEL)。由于積分球獨特幾何結構,激光束功率測量不受激光束偏振及校準的影響。在不影響探測器信號的情況下,該系統(tǒng)可使用開放端口,或可安裝激光二極管模塊或縮孔器的光纖適配器。 (圖5)??梢蕴砑宇~外的端口來執(zhí)行并行光譜表征,使其成為可靠的激光二極管壽命測試的理想設備。成像和非成像校準用均勻光源,積分球是一種近乎完美的創(chuàng)造均勻光源的方法。輻射度是離開光源或輻射面的每個立體角的通量密度。輻照度是落在表面上的通量密度,在表面的平面上測量。積分球光源的輸出孔徑在設計正確的情況下,可以產(chǎn)生接近完美的多光譜漫射光源和朗伯光源,與視角無關(圖6)。積分球,跨越學科界限,將數(shù)學、物理、工程等領域緊密相連,推動著人類文明的進步。

積分球(Integrating sphere)又稱為光通球、光度球,是一個中空的完整球殼。積分球多由金屬資料制成,內壁涂白色高漫反射層(通常是氧化鎂或硫酸鋇),且球內壁各點漫射均勻。也有積分球采用高反射高分子資料制成,例如Spectralon資料。光源在球壁上任意一點上發(fā)生的光照度是由屢次反射光發(fā)生的光照度疊加而成的。這樣,進入積分球的光經(jīng)過內壁涂層屢次反射,在內壁上構成均勻照度。積分球常用于測驗光源的光通量、色溫、光效等參數(shù),也可用于丈量物體的反射率和透過率等。積分球內光源的均勻性對于實驗結果至關重要。試驗積分球均勻光源
積分球是一種內壁涂有白色漫反射材料的球體,用于光學實驗和照明設計。色溫可調均勻光源高光譜成像
積分球(Integrating sphere)又稱為光通球、光度球,是一個中空的完整球殼。積分球多由金屬資料制成,內壁涂白色高漫反射層(通常是氧化鎂或硫酸鋇),且球內壁各點漫射均勻。也有積分球采用高反射高分子資料制成,例如Spectralon資料。光源在球壁上任意一點上發(fā)生的光照度是由屢次反射光發(fā)生的光照度疊加而成的。這樣,進入積分球的光經(jīng)過內壁涂層屢次反射,在內壁上構成均勻照度。積分球的詳細介紹,積分球常用于測驗光源的光通量、色溫、光效等參數(shù),也可用于丈量物體的反射率和透過率等。色溫可調均勻光源高光譜成像