相比于經(jīng)典的土壤水分測(cè)量方法,基于低場(chǎng)核磁的土壤水分相態(tài)分布探測(cè)技術(shù)具有操作步驟簡(jiǎn)單、測(cè)試過(guò)程便捷、成本投入較低的優(yōu)勢(shì)。另外,它還有專門(mén)使用的土壤水分測(cè)量軟件,實(shí)現(xiàn)了參數(shù)設(shè)置、定標(biāo)、測(cè)量、數(shù)據(jù)上傳、查詢過(guò)程的一體化,可以直接將測(cè)試結(jié)果實(shí)時(shí)傳輸?shù)诫娔X終端,結(jié)合自動(dòng)灌溉系統(tǒng),實(shí)現(xiàn)了設(shè)施菜地土壤管理的科學(xué)化和自動(dòng)化。另外,由于核磁共振測(cè)氫技術(shù)可以很好地區(qū)分不與固體顆?;蛉軇┫嗷プ饔玫淖杂伤徒Y(jié)晶水,以及物理化學(xué)鍵結(jié)合的結(jié)合水或不易移動(dòng)水,并且可以通過(guò)橫向弛豫特征峰面積與土壤含水率之間的線性關(guān)系推算出土壤含水量,從而可為土壤水分相態(tài)分布的檢出提供新的技術(shù)支持。水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可用于土壤水分物性研究(自由水和束縛術(shù)含量)。小核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)檢測(cè)原理

潤(rùn)濕性
自吸:已飽油巖樣放入吸水儀中,如果巖石親水,毛細(xì)作用下,水將自動(dòng)吸入巖石將巖石中的油驅(qū)替出來(lái),驅(qū)替出的油浮于儀器頂部,體積能夠直接讀出;如果巖石有親油能力,則使用飽水巖樣,置入油中,倒置讀出驅(qū)出水量;由于巖石具有非均質(zhì)性,既親油又親水,一般同一巖樣重復(fù)做吸水驅(qū)油和吸油驅(qū)水實(shí)驗(yàn);自吸離心法:除自吸外,利用離心機(jī)產(chǎn)生離心力將巖心毛管中可流動(dòng)的液體排除,得到總的可流動(dòng)毛管體積:水排比=自動(dòng)吸水量/(自動(dòng)吸水量+離心吸水(排油)量);油排比=自動(dòng)吸油量/(自動(dòng)吸油量+離心吸油(排水)量);自吸驅(qū)替法:與自吸離心法相似,不同在于將離心機(jī)旋轉(zhuǎn)產(chǎn)生的離心力改為將巖心裝入巖心夾持器中加壓進(jìn)行驅(qū)替;實(shí)驗(yàn)步驟:飽油(含束縛水)巖樣自吸水,測(cè)排油量C,巖心放入夾持器,水驅(qū)油測(cè)油量D;水驅(qū)后(含殘余油)自吸油,測(cè)排水量A,巖心放入夾持器,油驅(qū)水測(cè)水量B。油潤(rùn)濕指數(shù)=A/(A+B)水潤(rùn)濕指數(shù)=C/(C+D) 一站式磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)應(yīng)用領(lǐng)域示例小型核磁共振儀器能夠從頻率維度、空間維度和時(shí)間維度信息表征物體特性。

基于低場(chǎng)時(shí)域核磁共振技術(shù)的土壤潤(rùn)濕性評(píng)價(jià)標(biāo)準(zhǔn)探索 土壤的潤(rùn)濕性其本質(zhì)機(jī)制是水分進(jìn)入土壤后所發(fā)生的一系列化學(xué)反應(yīng)。水分進(jìn)入土壤后,其有兩個(gè)進(jìn)程,first個(gè)為快速吸收,這主要是由于干燥的有機(jī)物吸水、膨脹,形成凝膠,并產(chǎn)生微孔;第二個(gè)進(jìn)程主要體現(xiàn)在具有憎水性的土壤中,即土壤顆粒表面的憎水性有機(jī)物覆層與載體-土壤顆粒之間的連接,因水分的滲透作用而發(fā)生破壞,該過(guò)程伴隨少量的吸水量,且持續(xù)時(shí)間較長(zhǎng)?;诘蛨?chǎng)時(shí)域磁共振技術(shù),通過(guò)測(cè)量土壤樣品中的水分的橫向弛豫時(shí)間及其分布發(fā)現(xiàn):當(dāng)憎水性土壤暴露在水分中足夠長(zhǎng)的時(shí)間,其與同類型的潤(rùn)濕性能優(yōu)異的土壤將達(dá)到相同或相似的水分分布平衡狀態(tài)?;诖耍蛨?chǎng)時(shí)域核磁共振技術(shù),為評(píng)價(jià)土壤的潤(rùn)濕性提供了一條可行的途徑:通過(guò)計(jì)算土壤樣品的加權(quán)平均T2橫向弛豫時(shí)間T2gm,即當(dāng)土壤樣品暴露于水中足夠長(zhǎng)的時(shí)間后,其T2gm持續(xù)降低,并在3周后,降低一個(gè)數(shù)量級(jí),則說(shuō)明該土壤為憎水性土壤,潤(rùn)濕性能較差。 磁共振土壤分析儀,采用優(yōu)化的磁場(chǎng)強(qiáng)度、探頭系統(tǒng)、溫控系統(tǒng)等硬件配置,功能強(qiáng)大的軟件分析系統(tǒng),可對(duì)土壤樣品進(jìn)行長(zhǎng)時(shí)間在線精確測(cè)量,可為土壤潤(rùn)濕性評(píng)價(jià)分析提供一種高效、快捷、精確分析途徑。
水泥基材料-土壤-巖芯等多孔介質(zhì)核磁共振(NMR)基本原理: 帶自旋的原子核(1H) 1) 一個(gè)帶電的自旋體產(chǎn)生一環(huán)形電流。從而形成微觀磁場(chǎng)?自旋磁矩; 2) 自旋磁矩與一般的小磁鐵一樣具有南北極; 3) 在無(wú)外加磁場(chǎng)時(shí)。物質(zhì)中的原子核磁場(chǎng)的指向是無(wú)規(guī)則分布的。宏觀磁矩M0為0宏觀磁矩M0的形成; 4) 置于靜磁場(chǎng)中原子核與磁場(chǎng)產(chǎn)生作用。沿著磁場(chǎng)方向定向排列。形成宏觀磁矩M0 NMR信號(hào)產(chǎn)生原理 1) 樣品進(jìn)入檢測(cè)區(qū)域。樣品中中氫原子核的磁矩將沿著靜磁場(chǎng)方向排列并形成宏觀磁矩M0 2) 施加特定頻率激發(fā)脈沖。宏觀磁矩定向偏轉(zhuǎn) 3) 脈沖結(jié)束。宏觀磁矩定向恢復(fù)并產(chǎn)生核磁共振信號(hào) 低場(chǎng)核磁共振是一種正在興起的快速無(wú)損檢測(cè)技術(shù)。具有測(cè)試速度快。靈敏度高、無(wú)損、綠色等優(yōu)點(diǎn)。已廣闊應(yīng)用在食品品質(zhì)控制、非酒精性脂肪肝等代謝疾病、石油勘探、水泥水化過(guò)程分析、水泥基材料不同配方選擇、土壤水分物性及孔隙物性研究、土壤固體有機(jī)質(zhì)探測(cè)、非常規(guī)巖芯總體孔隙度及有效孔隙度檢測(cè)、油水氣飽等水泥基材料、土壤、巖芯等多孔介質(zhì)領(lǐng)域。低場(chǎng)核磁設(shè)備一般采用永磁體,測(cè)試樣品介于兩磁極中心,通過(guò)激勵(lì)與信號(hào)處理即可得到穩(wěn)定。

MAGMED Cores HP20L 非常規(guī)巖芯核磁共振分析儀技術(shù)優(yōu)勢(shì): 1)非常規(guī)巖芯核磁共振分析儀有高性能驅(qū)替系統(tǒng)。極大圍壓10000psi。極大驅(qū)替壓8000psi。極高溫度120℃; 2)非常規(guī)巖芯核磁共振分析儀可測(cè)0.02毫升水樣。誤差±0.5%。并可對(duì)氣體。如甲烷等直接測(cè)量; 3)非常規(guī)巖芯核磁共振分析儀特有T1-T2二維脈沖??蓞^(qū)分樣品中不同的含氫組分。如水、油、氣、油母瀝青等; 4)非常規(guī)巖芯核磁共振分析儀與石油巖芯領(lǐng)域國(guó)際前沿科研機(jī)構(gòu)合作。標(biāo)準(zhǔn)的非常規(guī)巖芯分析流程,全力技術(shù)支持;土壤和巖芯在多孔介質(zhì)中起到支撐和穩(wěn)定作用。小核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)檢測(cè)原理
水泥基材料-土壤-巖芯等多孔介質(zhì)磁共振分析儀可對(duì)水泥基材料的水分含量和水分分布進(jìn)行研究。小核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)檢測(cè)原理
低場(chǎng)時(shí)域核磁共振技術(shù)用于土壤中的孔隙分布研究 土壤作為一種非穩(wěn)態(tài)多孔介質(zhì),其在吸水過(guò)程中,孔隙狀態(tài)發(fā)生變化,并形成新的孔隙分布狀態(tài)。通常對(duì)土壤等多孔介質(zhì)中的孔隙定性分為3大類:微孔(micropores)、中孔(mesopores)、大孔(macropores)。當(dāng)孔隙中填充水時(shí),由于水中的氫原子核在不同尺寸的孔隙中,受到的束縛強(qiáng)度不同?;诘蛨?chǎng)時(shí)域核磁共振技術(shù)原理,當(dāng)氫原子在靜磁場(chǎng)中,受靜磁場(chǎng)作用,定向排列,形成宏觀磁矩,被一特定交變磁場(chǎng)激發(fā)后,吸收能量,使宏觀磁矩發(fā)生偏轉(zhuǎn)(90°、180°等),當(dāng)交變磁場(chǎng)撤除后,受靜磁場(chǎng)作用,宏觀此舉恢復(fù)到初始狀態(tài),這一過(guò)程即共振。其中橫向弛豫時(shí)間T2是描述氫原子核弛豫快慢的特征參數(shù),其大小反應(yīng)了氫原子核所處的環(huán)境,即束縛的越強(qiáng)烈,弛豫越快,T2越小。小核磁共振水泥基材料-土壤-巖芯等多孔介質(zhì)檢測(cè)原理