如果CCD的質(zhì)量能夠滿足一定色彩位數(shù)的要求,為了獲得相應(yīng)的輸出效果,就要求有相應(yīng)位數(shù)的數(shù)模轉(zhuǎn)換實(shí)現(xiàn)數(shù)據(jù)采樣,才能獲得滿意的效果,如果CCD可以實(shí)現(xiàn)36位精度,卻使用了三個(gè)8位的數(shù)模轉(zhuǎn)換器,結(jié)果輸出出來(lái)就只剩下24位的數(shù)據(jù)精度了,這對(duì)于CCD是一種浪費(fèi),而如果使用三個(gè)16位的數(shù)模轉(zhuǎn)換器,是實(shí)現(xiàn)了48位的數(shù)據(jù)輸出,但效果與36位比較并無(wú)改善,對(duì)數(shù)模轉(zhuǎn)換器就是一種浪費(fèi)了。1. 數(shù)模轉(zhuǎn)換器是將數(shù)字信號(hào)轉(zhuǎn)換為模擬信號(hào)的系統(tǒng),一般用低通濾波即可以實(shí)現(xiàn)。數(shù)字信號(hào)先進(jìn)行解碼,即把數(shù)字碼轉(zhuǎn)換成與之對(duì)應(yīng)的電平,形成階梯狀信號(hào),然后進(jìn)行低通濾波。由采樣定理,采樣信號(hào)的頻譜經(jīng)理想低通濾波便得到原來(lái)模擬信號(hào)的頻譜。嘉定區(qū)智能數(shù)模轉(zhuǎn)換器批量定制

D/A轉(zhuǎn)換器的主要特性指標(biāo)包括以下幾方面:分辨率指**小輸出電壓(對(duì)應(yīng)的輸入數(shù)字量只有比較低有效位為“1”)與比較大輸出電壓(對(duì)應(yīng)的輸入數(shù)字量所有有效位全為“1”)之比。如N位D/A轉(zhuǎn)換器,其分辨率為1/(2^N-1)。在實(shí)際使用中,表示分辨率大小的方法也用輸入數(shù)字量的位數(shù)來(lái)表示。線性度用非線性誤差的大小表示D/A轉(zhuǎn)換的線性度。并且把理想的輸入輸出特性的偏差與滿刻度輸出之比的百分?jǐn)?shù)定義為非線性誤差。轉(zhuǎn)換精度D/A轉(zhuǎn)換器的轉(zhuǎn)換精度與D/A轉(zhuǎn)換器的集成芯片的結(jié)構(gòu)和接口電路配置有關(guān)。如果不考慮其他D/A轉(zhuǎn)換誤差時(shí),D/A的轉(zhuǎn)換精度就是分辨率的大小,因此要獲得高精度的D/A轉(zhuǎn)換結(jié)果,首先要保證選擇有足夠分辨率的D/A轉(zhuǎn)換器。同時(shí)D/A轉(zhuǎn)換精度還與外接電路的配置有關(guān),當(dāng)外部電路器件或電源誤差較大時(shí),會(huì)造成較大的D/A轉(zhuǎn)換誤差,當(dāng)這些誤差超過(guò)一定程度時(shí),D/A轉(zhuǎn)換就產(chǎn)生錯(cuò)誤。嘉定區(qū)質(zhì)量數(shù)模轉(zhuǎn)換器性價(jià)比如N位D/A轉(zhuǎn)換器,其分辨率為1/(2^N-1)。

2. 模數(shù)轉(zhuǎn)換器是將模擬信號(hào)轉(zhuǎn)換成數(shù)字信號(hào)的系統(tǒng),是一個(gè)濾波、采樣保持和編碼的過(guò)程。模擬信號(hào)經(jīng)帶限濾波,采樣保持電路,變?yōu)殡A梯形狀信號(hào),然后通過(guò)編碼器,使得階梯狀信號(hào)中的各個(gè)電平變?yōu)槎M(jìn)制碼。3. 比較器是將兩個(gè)相差不是很小的電壓進(jìn)行比較的系統(tǒng)。**簡(jiǎn)單的比較器就是運(yùn)算放大器。我們知道,運(yùn)算放大器在連有深度負(fù)反饋的條件下,會(huì)在線性區(qū)工作,有著增益很大的放大特性,在計(jì)算時(shí)往往認(rèn)為它放大的倍數(shù)是無(wú)窮大。而在沒(méi)有反饋的條件下,運(yùn)算放大器在線性區(qū)的輸入動(dòng)態(tài)范圍很小,即兩個(gè)輸入電壓有一定差距就會(huì)使運(yùn)算放大器達(dá)到飽和。如果同相端電壓較大,則輸出最大電壓,一般是+12V;如果反相端電壓較大,則輸出**小電壓,一般是-12V。這樣,就實(shí)現(xiàn)了電壓比較功能。
D/A轉(zhuǎn)換器的主要部件是電阻開(kāi)關(guān)網(wǎng)絡(luò),通常是由輸入的二進(jìn)制數(shù)的各位控制一些開(kāi)關(guān),通過(guò)電阻網(wǎng)絡(luò),在運(yùn)算放大器的輸入端產(chǎn)生與二進(jìn)制數(shù)各位的權(quán)成比例的電流,這些電流經(jīng)過(guò)運(yùn)算放大器相加和轉(zhuǎn)換而成為與二進(jìn)制數(shù)成比例的模擬電壓。D/A轉(zhuǎn)換的原理電路如概述圖圖5-1所示,是一個(gè)足 夠精度的參考電壓,運(yùn)算放大器輸入端的各支路對(duì)應(yīng)待轉(zhuǎn)換數(shù)據(jù)的第0位、第1位、...、第n-1位。支路中的開(kāi)關(guān)由對(duì)應(yīng)的數(shù)位來(lái)控制,如果該數(shù)位位“1”,則對(duì)應(yīng)的開(kāi)關(guān)閉合;如果該數(shù)位為“0”,則對(duì)應(yīng)的開(kāi)關(guān)打開(kāi)。各輸入支路中的電阻分別為R、2R、4R、...這些電阻稱為權(quán)電阻。它們把數(shù)字量轉(zhuǎn)換成電模擬量,即把二進(jìn)制數(shù)字量轉(zhuǎn)換為與其數(shù)值成正比的電模擬量。 [1]對(duì)于布局的考慮也是轉(zhuǎn)換輸出選擇中的一個(gè)方面,尤其當(dāng)采用LVDS技術(shù)時(shí)。

工作溫度范圍一般情況下,影響D/A轉(zhuǎn)換精度的主要環(huán)境和工作條件因素是溫度和電源電壓變化。由于工作溫度會(huì)對(duì)運(yùn)算放大器加權(quán)電阻網(wǎng)絡(luò)等產(chǎn)生影響,所以只有在一定的工作范圍內(nèi)才能保證額定精度指標(biāo)。較好的D/A轉(zhuǎn)換器的工作溫度范圍在-40℃~85℃之間,較差的D/A轉(zhuǎn)換器的工作溫度范圍在0℃~70℃之間。多數(shù)器件其靜、動(dòng)態(tài)指標(biāo)均在25℃的工作溫度下測(cè)得的,工作溫度對(duì)各項(xiàng)精度指標(biāo)的影響用溫度系數(shù)來(lái)描述,如失調(diào)溫度系數(shù)、增益溫度系數(shù)、微分線性誤差溫度系數(shù)等。在滿刻度輸出的條件下,溫度每升高1℃,輸出變化的百分?jǐn)?shù)定義為溫度系數(shù)。嘉定區(qū)智能數(shù)模轉(zhuǎn)換器批量定制
真正的電壓比較器還會(huì)增加一些輔助電路,加強(qiáng)性能。嘉定區(qū)智能數(shù)模轉(zhuǎn)換器批量定制
在D/A轉(zhuǎn)換過(guò)程中,影響轉(zhuǎn)換精度的主要因素有失調(diào)誤差、增益誤差、非線性誤差和微分非線性誤差。轉(zhuǎn)換速度轉(zhuǎn)換速度一般由建立時(shí)間決定。從輸入由全0突變?yōu)槿?時(shí)開(kāi)始,到輸出電壓穩(wěn)定在FSR±?LSB范圍(或以FSR±x%FSR指明范圍)內(nèi)為止,這段時(shí)間稱為建立時(shí)間,它是DAC的比較大響應(yīng)時(shí)間,所以用它衡量轉(zhuǎn)換速度的快慢 [1]。在滿刻度輸出的條件下,溫度每升高1℃,輸出變化的百分?jǐn)?shù)定義為溫度系數(shù)。電源抑制比對(duì)于高質(zhì)量的D/A轉(zhuǎn)換器,要求開(kāi)關(guān)電路及運(yùn)算放大器所用的電源電壓發(fā)生變化時(shí),對(duì)輸出電壓影響極小。通常把滿量程電壓變化的百分?jǐn)?shù)與電源電壓變化的百分?jǐn)?shù)之比稱為電源抑制比。嘉定區(qū)智能數(shù)模轉(zhuǎn)換器批量定制
上海集震電子科技有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場(chǎng)高度,多年以來(lái)致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的電子元器件中始終保持良好的商業(yè)口碑,成績(jī)讓我們喜悅,但不會(huì)讓我們止步,殘酷的市場(chǎng)磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營(yíng)養(yǎng)的公司土壤滋養(yǎng)著我們不斷開(kāi)拓創(chuàng)新,勇于進(jìn)取的無(wú)限潛力,集震供應(yīng)攜手大家一起走向共同輝煌的未來(lái),回首過(guò)去,我們不會(huì)因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績(jī)而沾沾自喜,相反的是面對(duì)競(jìng)爭(zhēng)越來(lái)越激烈的市場(chǎng)氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來(lái)!
DAC主要由數(shù)字寄存器、模擬電子開(kāi)關(guān)、位權(quán)網(wǎng)絡(luò)、求和運(yùn)算放大器和基準(zhǔn)電壓源(或恒流源)組成。用存于數(shù)字寄存器的數(shù)字量的各位數(shù)碼,分別控制對(duì)應(yīng)位的模擬電子開(kāi)關(guān),使數(shù)碼為1的位在位權(quán)網(wǎng)絡(luò)上產(chǎn)生與其位權(quán)成正比的電流值,再由運(yùn)算放大器對(duì)各電流值求和,并轉(zhuǎn)換成電壓值 [1]。根據(jù)位權(quán)網(wǎng)絡(luò)的不同,可以構(gòu)成不同類型的DAC,如權(quán)電阻網(wǎng)絡(luò)DAC、R–2R倒T形電阻網(wǎng)絡(luò)DAC和單值電流型網(wǎng)絡(luò)DAC等。權(quán)電阻網(wǎng)絡(luò)DAC的轉(zhuǎn)換精度取決于基準(zhǔn)電壓VREF,以及模擬電子開(kāi)關(guān)、運(yùn)算放大器和各權(quán)電阻值的精度。它的缺點(diǎn)是各權(quán)電阻的阻值都不相同,位數(shù)多時(shí),其阻值相差甚遠(yuǎn),這給保證精度帶來(lái)很大困難,特別是對(duì)于集成電路的制作很不利...