從制造工藝層面看,多芯MT-FA光耦合器的突破源于材料科學(xué)與精密工程的深度融合。其重要部件MT插芯采用陶瓷-金屬復(fù)合材料,通過超精密磨削將芯間距誤差控制在±0.5μm以內(nèi),配合新型Hybrid353ND系列膠水實現(xiàn)UV固化定位與353ND環(huán)氧樹脂性能的雙重保障,有效解決了傳統(tǒng)工藝中因熱應(yīng)力導(dǎo)致的通道偏移問題。在三維集成方面,該器件通過銅錫熱壓鍵合技術(shù),在15μm間距上形成2304個微米級互連點,剪切強(qiáng)度達(dá)114.9MPa,同時將電容降低至10fF,使光子層與電子層的信號同步誤差小于2ps。這種結(jié)構(gòu)不僅支持多波長復(fù)用傳輸,還能通過微盤調(diào)制器與鍺硅光電二極管的集成,實現(xiàn)單比特50fJ的較低能耗。實際應(yīng)用中,多芯MT-FA已驗證可在4m單模光纖傳輸下保持誤碼率低于4×10?1?,其緊湊型設(shè)計(0.3mm2芯片面積)更適配CPO(共封裝光學(xué))架構(gòu),為數(shù)據(jù)中心從100G向800G/1.6T演進(jìn)提供了可量產(chǎn)的解決方案。隨著三維光子集成技術(shù)向全光互連架構(gòu)發(fā)展,多芯MT-FA的光耦合效率與集成密度將持續(xù)優(yōu)化,成為突破AI算力瓶頸的關(guān)鍵基礎(chǔ)設(shè)施。三維光子互連芯片的技術(shù)進(jìn)步,有望解決自動駕駛等領(lǐng)域中數(shù)據(jù)實時傳輸?shù)碾y題。杭州光互連三維光子互連芯片

從技術(shù)實現(xiàn)層面看,多芯MT-FA光組件的集成需攻克三大重要挑戰(zhàn):其一,高精度制造工藝要求光纖陣列的通道間距誤差控制在±0.5μm以內(nèi),以確保與TSV孔徑的精確對齊;其二,低插損特性需通過特殊研磨工藝實現(xiàn),典型產(chǎn)品插入損耗≤0.35dB,回波損耗≥60dB,滿足AI算力場景下長時間高負(fù)載運(yùn)行的穩(wěn)定性需求;其三,熱應(yīng)力管理要求組件材料與硅基板的熱膨脹系數(shù)匹配度極高,避免因溫度波動導(dǎo)致的層間剝離。實際應(yīng)用中,該組件已成功應(yīng)用于1.6T光模塊的3D封裝,通過將光引擎與電芯片垂直堆疊,使單模塊封裝體積縮小40%,同時支持800G至1.6T速率的無縫升級。在AI服務(wù)器背板互聯(lián)場景下,MT-FA組件可實現(xiàn)每平方毫米10萬通道的光互連密度,較傳統(tǒng)方案提升2個數(shù)量級。這種技術(shù)突破不僅推動了三維芯片向更高集成度演進(jìn),更為下一代光計算架構(gòu)提供了基礎(chǔ)支撐,預(yù)示著光互連技術(shù)將成為突破內(nèi)存墻功耗墻的重要驅(qū)動力。北京3D光波導(dǎo)在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域,三維光子互連芯片的高性能將助力算法模型的快速訓(xùn)練和推理。

在制造工藝層面,高性能多芯MT-FA的三維集成面臨多重技術(shù)挑戰(zhàn)與創(chuàng)新突破。其一,多材料體系異質(zhì)集成要求光波導(dǎo)層與硅基電路的熱膨脹系數(shù)匹配,通過引入氮化硅緩沖層,可解決高溫封裝過程中的應(yīng)力開裂問題。其二,層間耦合精度需控制在亞微米級,采用飛秒激光直寫技術(shù)可在玻璃基板上直接加工三維光子結(jié)構(gòu),實現(xiàn)倏逝波耦合效率超過95%。其三,高密度封裝帶來的熱管理難題,通過在MT-FA陣列底部嵌入微通道液冷層,可將工作溫度穩(wěn)定在60℃以下,確保長期運(yùn)行的可靠性。此外,三維集成工藝中的自動化裝配技術(shù),如高精度V槽定位與紫外膠固化協(xié)同系統(tǒng),可將多芯MT-FA的通道對齊誤差縮小至±0.3μm,滿足400G/800G光模塊對耦合精度的極端要求。這些技術(shù)突破不僅推動了光組件向更高集成度演進(jìn),更為6G通信、量子計算等前沿領(lǐng)域提供了基礎(chǔ)器件支撐。
多芯MT-FA光模塊在三維光子互連系統(tǒng)中的創(chuàng)新應(yīng)用,正推動光通信向超高速、低功耗方向演進(jìn)。傳統(tǒng)光模塊受限于二維布局,其散熱與信號完整性在密集部署時面臨挑戰(zhàn),而三維架構(gòu)通過分層設(shè)計實現(xiàn)了熱源分散與信號隔離。多芯MT-FA組件在此背景下,通過集成保偏光纖與高精度對準(zhǔn)技術(shù),確保了多通道光信號的同步傳輸。例如,支持波長復(fù)用的MT-FA模塊,可在同一光波導(dǎo)中傳輸不同波長的光信號,每個波長通道單獨承載數(shù)據(jù)流,使單模塊傳輸容量提升至1.6Tbps。這種并行化設(shè)計不僅提升了帶寬密度,更通過減少模塊間互聯(lián)需求降低了系統(tǒng)功耗。進(jìn)一步地,三維光子互連系統(tǒng)中的MT-FA模塊支持動態(tài)重構(gòu)功能,可根據(jù)算力需求實時調(diào)整光路連接。例如,在AI訓(xùn)練場景中,模塊可通過軟件定義光網(wǎng)絡(luò)技術(shù),動態(tài)分配光通道至高負(fù)載計算節(jié)點,實現(xiàn)資源的高效利用。技術(shù)驗證表明,采用三維布局的MT-FA光模塊,其單位面積傳輸容量較傳統(tǒng)方案提升3倍以上,而功耗降低。這種性能躍升,使得三維光子互連系統(tǒng)成為下一代數(shù)據(jù)中心、超級計算機(jī)及6G網(wǎng)絡(luò)的重要基礎(chǔ)設(shè)施,為全球算力基礎(chǔ)設(shè)施的質(zhì)變升級提供了關(guān)鍵技術(shù)支撐。三維光子互連芯片通過光子傳輸?shù)姆绞剑行Ы鉀Q了這些問題,實現(xiàn)了更加穩(wěn)定和高效的信號傳輸。

三維光子芯片的能效突破與算力擴(kuò)展需求,進(jìn)一步凸顯了多芯MT-FA的戰(zhàn)略價值。隨著AI訓(xùn)練集群規(guī)模突破百萬級GPU互聯(lián),芯片間數(shù)據(jù)傳輸功耗已占系統(tǒng)總功耗的30%以上,傳統(tǒng)電互連方案面臨帶寬瓶頸與熱管理難題。多芯MT-FA通過光子-電子混合集成技術(shù),將光信號傳輸能效提升至120fJ/bit以下,較銅纜互連降低85%。其高精度對準(zhǔn)工藝(對準(zhǔn)精度±1μm)確保多芯通道間損耗差異小于0.1dB,支持80通道并行傳輸時仍能維持誤碼率低于10?12。在三維架構(gòu)中,MT-FA可與微環(huán)調(diào)制器、鍺硅探測器等光子器件共封裝,形成光互連立交橋:發(fā)射端通過MT-FA將電信號轉(zhuǎn)換為多路光信號,經(jīng)垂直波導(dǎo)傳輸至接收端后,再由另一組MT-FA完成光-電轉(zhuǎn)換,實現(xiàn)芯片間800Gb/s級無阻塞通信。這種架構(gòu)使芯片間通信帶寬密度達(dá)到5.3Tbps/mm2,較二維方案提升10倍,同時通過減少長距離銅纜連接,將系統(tǒng)級功耗降低40%。隨著三維光子芯片向1.6T及以上速率演進(jìn),多芯MT-FA的定制化能力(如保偏光纖陣列、角度可調(diào)端面)將成為突破物理層互連瓶頸的關(guān)鍵技術(shù)路徑。光信號在傳輸過程中幾乎不會損耗能量,因此三維光子互連芯片在數(shù)據(jù)傳輸方面具有極低的損耗特性。杭州光互連三維光子互連芯片
農(nóng)業(yè)物聯(lián)網(wǎng)發(fā)展,三維光子互連芯片助力農(nóng)田監(jiān)測數(shù)據(jù)的快速分析與反饋。杭州光互連三維光子互連芯片
在工藝實現(xiàn)層面,三維光子互連芯片的多芯MT-FA封裝需攻克多重技術(shù)挑戰(zhàn)。光纖陣列的制備涉及高精度V槽加工與紫外膠固化工藝,采用新型Hybrid353ND系列膠水可同時實現(xiàn)UV定位與結(jié)構(gòu)粘接,簡化流程并降低應(yīng)力。芯片堆疊環(huán)節(jié),通過混合鍵合技術(shù)將光子芯片與CMOS驅(qū)動層直接鍵合,鍵合間距突破至10μm以下,較傳統(tǒng)焊料凸點提升5倍集成度。熱管理方面,針對三維堆疊的散熱難題,研發(fā)團(tuán)隊開發(fā)了微流體冷卻通道與導(dǎo)熱硅中介層復(fù)合結(jié)構(gòu),使1.6T光模塊在滿負(fù)荷運(yùn)行時的結(jié)溫控制在85℃以內(nèi),較空氣冷卻方案降溫效率提升40%。此外,為適配CPO(共封裝光學(xué))架構(gòu),MT-FA組件的端面角度和通道間距可定制化調(diào)整,支持從100G到1.6T的全速率覆蓋,其低插損特性(單通道損耗<0.2dB)確保了光信號在超長距離傳輸中的完整性。隨著AI大模型參數(shù)規(guī)模突破萬億級,該技術(shù)有望成為下一代數(shù)據(jù)中心互聯(lián)的重要解決方案,推動光通信向光子集成+電子協(xié)同的異構(gòu)計算范式演進(jìn)。杭州光互連三維光子互連芯片
多芯MT-FA光組件作為三維光子互連技術(shù)的重要載體,通過精密的多芯光纖陣列設(shè)計,實現(xiàn)了光信號在微米級...
【詳情】在光電融合層面,高性能多芯MT-FA的三維集成方案通過異構(gòu)集成技術(shù)將光學(xué)無源器件與有源芯片深度融合,...
【詳情】從工藝實現(xiàn)層面看,多芯MT-FA的部署需與三維芯片制造流程深度協(xié)同。在芯片堆疊階段,MT-FA的陣列...
【詳情】從制造工藝層面看,多芯MT-FA光耦合器的突破源于材料科學(xué)與精密工程的深度融合。其重要部件MT插芯采...
【詳情】三維光子互連系統(tǒng)與多芯MT-FA光模塊的融合,正在重塑高速光通信的技術(shù)范式。傳統(tǒng)光模塊依賴二維平面布...
【詳情】多芯MT-FA光纖連接器的技術(shù)演進(jìn)正推動光互連向更復(fù)雜的系統(tǒng)級應(yīng)用延伸。在高性能計算領(lǐng)域,其通過模分...
【詳情】多芯MT-FA光組件的三維光子耦合方案是突破高速光通信系統(tǒng)帶寬瓶頸的重要技術(shù),其重要在于通過三維空間...
【詳情】三維光子芯片多芯MT-FA光互連標(biāo)準(zhǔn)的制定,是光通信領(lǐng)域向超高速、高密度方向演進(jìn)的關(guān)鍵技術(shù)支撐。隨著...
【詳情】該標(biāo)準(zhǔn)的演進(jìn)正推動光組件與芯片異質(zhì)集成技術(shù)的深度融合。在制造工藝維度,三維互連標(biāo)準(zhǔn)明確要求MT-FA...
【詳情】多芯MT-FA光組件在三維芯片架構(gòu)中扮演著光互連重要的角色,其部署直接決定了芯片間數(shù)據(jù)傳輸?shù)膸捗芏?..
【詳情】