圍繞電子束曝光在第三代半導(dǎo)體功率器件柵極結(jié)構(gòu)制備中的應(yīng)用,科研團(tuán)隊(duì)開展了專項(xiàng)研究。功率器件的柵極尺寸與形狀對(duì)其開關(guān)性能影響明顯,團(tuán)隊(duì)通過電子束曝光制備不同線寬的柵極圖形,研究尺寸變化對(duì)器件閾值電壓與導(dǎo)通電阻的影響。利用電學(xué)測(cè)試平臺(tái),對(duì)比不同柵極結(jié)構(gòu)的器件性能,優(yōu)化出適合高壓應(yīng)用的柵極尺寸參數(shù)。這些研究成果已應(yīng)用于省級(jí)重點(diǎn)科研項(xiàng)目中,為高性能功率器件的研發(fā)提供了關(guān)鍵技術(shù)支撐。科研人員研究了電子束曝光過程中的電荷積累效應(yīng)及其應(yīng)對(duì)措施。絕緣性較強(qiáng)的半導(dǎo)體材料在電子束照射下容易積累電荷,導(dǎo)致圖形偏移或畸變,團(tuán)隊(duì)通過在曝光區(qū)域附近設(shè)置導(dǎo)電輔助層與接地結(jié)構(gòu),加速電荷消散。電子束曝光在超高密度存儲(chǔ)領(lǐng)域?qū)崿F(xiàn)納米全息結(jié)構(gòu)的精確編碼。吉林高分辨電子束曝光加工廠

對(duì)于可修復(fù)的微小缺陷,通過局部二次曝光的方式進(jìn)行修正,提高了圖形的合格率。在 6 英寸晶圓的中試實(shí)驗(yàn)中,這種缺陷修復(fù)技術(shù)使無效區(qū)域的比例降低了一定程度,提升了電子束曝光的材料利用率。研究所將電子束曝光技術(shù)與納米壓印模板制備相結(jié)合,探索低成本大規(guī)模制備微納結(jié)構(gòu)的途徑。納米壓印技術(shù)適合批量生產(chǎn),但模板制備依賴高精度加工手段,團(tuán)隊(duì)通過電子束曝光制備高質(zhì)量的原始模板,再通過電鑄工藝復(fù)制得到可用于批量壓印的工作模板。對(duì)比電子束直接曝光與納米壓印的圖形質(zhì)量,發(fā)現(xiàn)兩者在微米尺度下的精度差異較小,但壓印效率更高。這項(xiàng)研究為平衡高精度與高效率的微納制造需求提供了可行方案,有助于推動(dòng)第三代半導(dǎo)體器件的產(chǎn)業(yè)化進(jìn)程。中山微納光刻電子束曝光外協(xié)電子束曝光實(shí)現(xiàn)太赫茲波段的電磁隱身超材料智能設(shè)計(jì)制造。

圍繞電子束曝光在半導(dǎo)體激光器腔面結(jié)構(gòu)制備中的應(yīng)用,研究所進(jìn)行了專項(xiàng)攻關(guān)。激光器腔面的平整度與垂直度直接影響其出光效率與壽命,科研團(tuán)隊(duì)通過控制電子束曝光的劑量分布,在腔面區(qū)域制備高精度掩模,再結(jié)合干法刻蝕工藝實(shí)現(xiàn)陡峭的腔面結(jié)構(gòu)。利用光學(xué)測(cè)試平臺(tái),對(duì)比不同腔面結(jié)構(gòu)的激光器性能,發(fā)現(xiàn)優(yōu)化后的腔面使器件的閾值電流降低,斜率效率有所提升。這項(xiàng)研究充分發(fā)揮了電子束曝光的納米級(jí)加工優(yōu)勢(shì),為高性能半導(dǎo)體激光器的制備提供了工藝支持,相關(guān)成果已應(yīng)用于多個(gè)研發(fā)項(xiàng)目。
研究所利用其覆蓋半導(dǎo)體全鏈條的科研平臺(tái),研究電子束曝光技術(shù)在半導(dǎo)體材料表征中的應(yīng)用。通過在材料表面制備特定形狀的測(cè)試圖形,結(jié)合原子力顯微鏡與霍爾效應(yīng)測(cè)試系統(tǒng),分析材料的微觀力學(xué)性能與電學(xué)參數(shù)分布。在氮化物外延層的表征中,團(tuán)隊(duì)通過電子束曝光制備的微納測(cè)試結(jié)構(gòu),實(shí)現(xiàn)了材料遷移率與缺陷密度的局部區(qū)域測(cè)量,為材料質(zhì)量評(píng)估提供了更精細(xì)的手段。這種將加工技術(shù)與表征需求結(jié)合的創(chuàng)新思路,拓展了電子束曝光的應(yīng)用價(jià)值。電子束曝光實(shí)現(xiàn)特定頻段聲波調(diào)控的低頻降噪超材料設(shè)計(jì)制造。

在電子束曝光工藝優(yōu)化方面,研究所聚焦曝光效率與圖形質(zhì)量的平衡問題。針對(duì)傳統(tǒng)電子束曝光速度較慢的局限,科研人員通過分區(qū)曝光策略與參數(shù)預(yù)設(shè)方案,在保證圖形精度的前提下,提升了 6 英寸晶圓的曝光效率。利用微納加工平臺(tái)的協(xié)同優(yōu)勢(shì),團(tuán)隊(duì)將電子束曝光與干法刻蝕工藝結(jié)合,研究不同曝光后處理方式對(duì)圖形側(cè)壁垂直度的影響,發(fā)現(xiàn)適當(dāng)?shù)钠毓夂蠛婵緶囟饶軠p少圖形邊緣的模糊現(xiàn)象。這些工藝優(yōu)化工作使電子束曝光技術(shù)更適應(yīng)中試規(guī)模的生產(chǎn)需求,為第三代半導(dǎo)體器件的批量制備提供了可行路徑。電子束曝光為新型光伏器件構(gòu)建高效陷光結(jié)構(gòu)以提升能源轉(zhuǎn)化效率。吉林高分辨電子束曝光加工廠
電子束曝光在微型熱電制冷器領(lǐng)域突破界面熱阻控制瓶頸。吉林高分辨電子束曝光加工廠
研究所針對(duì)電子束曝光在高頻半導(dǎo)體器件互聯(lián)線制備中的應(yīng)用開展研究。高頻器件對(duì)互聯(lián)線的尺寸精度與表面粗糙度要求嚴(yán)苛,科研團(tuán)隊(duì)通過優(yōu)化電子束曝光的掃描方式,減少線條邊緣的鋸齒效應(yīng),提升互聯(lián)線的平整度。利用微納加工平臺(tái)的精密測(cè)量設(shè)備,對(duì)制備的互聯(lián)線進(jìn)行線寬與厚度均勻性檢測(cè),結(jié)果顯示優(yōu)化后的工藝使線寬偏差控制在較小范圍,滿足高頻信號(hào)傳輸需求。在毫米波器件的研發(fā)中,這種高精度互聯(lián)線有效降低了信號(hào)傳輸損耗,為器件高頻性能的提升提供了關(guān)鍵支撐,相關(guān)工藝已納入中試技術(shù)方案。吉林高分辨電子束曝光加工廠